
Mempool Analysis & Simulation
Karl-Johan Alm

@kallewoof

C42A FF7C 61B3 E44A 1454 CD35 57AF 762D B335 3322

Agenda

● Why?
● What?
● How?
● So!

Why?

Background
"Optimizing fee estimation via the mempool state", Scaling Stanford 2017[1]

No tools to do fee rate analysis.

Unable to make comparisons of different strategies.

Even with ZMQ logs data is lost. Orphaned blocks & txs. Why care? Because
they are missing pieces of a complete re-enactment of some point in time.

Want a way to record, and playback, the mempool.

[1]https://scalingbitcoin.org/stanford2017/Day2/Scaling-2017-Optimizing-fee-estimation-via-the-mempool-state.pdf

https://scalingbitcoin.org/stanford2017/Day2/Scaling-2017-Optimizing-fee-estimation-via-the-mempool-state.pdf

● Loss of information: timestamps, blocks, transactions.
● No good answer to "what happened at t=X..Y"
● No good way to simulate fee estimators
● No public information on what harvesters gather from mempool analysis.
● No good way to gauge "spam" vs "organic use".
● What prt of txs are likely miners' (i.e. not broadcasted but mined directly)
● MFF addresses this & as a bonus also addresses assumption that Bitcoin

is somehow anonymous. (It isn't.)

We have no recording of the mempool, only of the resulting chain.

Why record/playback the mempool?

What?

MFF (Mempool File Format)

● logs time of (re-)entry/exit/confirmation/invalidation
● logs entire raw data for transactions that were replaced (RBF, 2x-spend, ..)
● logs chain tip changes (block mined/orphaned, & which txs were in it)
● can seek on a per-block basis, but "find tx X" requires O(n), n=entire db

Library implementation is called libbcq, and is built on top of a database
format called CQDB.

A new tool for mempool analysis

A new tool for mempool analysis

Client Type Downloads Keeps

Light Clients Interesting blocks Nothing

Pruned Full Nodes All blocks & recent txs Recent confirmed blocks & unconfirmed txs

Full Nodes All blocks & recent txs All confirmed blocks & unconfirmed txs

↑ MFF enabled All blocks & recent txs All blocks, unconfirmed + invalidated txs retaining order

A new tool for mempool analysis

Client Type Downloads Keeps

Light Clients Interesting blocks Nothing

Pruned Full Nodes All blocks & recent txs Recent confirmed blocks & unconfirmed txs

Full Nodes All blocks & recent txs All confirmed blocks & unconfirmed txs

↑ MFF enabled All blocks & recent txs All blocks, unconfirmed + invalidated txs retaining order

MFF so far (tiny mempool ZMQ dump)
Source ZMQ dumps w/o block hex (only block hash); tiny mempool setting (10k tx cap)

Period June 18 2018 ~ May 27 2019 (313 days, block #532421 ~ #578042, 45622 blocks)

Size on disk 6.8 GB (between 200-400 MB/cluster, avg 287 MB) ~> 22 MB/day

Entries 274822087 (274.8 million), with 16073 tx invalidations

Count dist tx in=52.6% (23.3% ref), tx out=47.4%, tx invdt=0.01%, block mined=0.02%

Byte dist tx in=84.8% (3.6% ref), tx out=7.6%, tx invdt=0.09%, block mined=7.5%

Top ref tx db9539c40343c5c47bdaaa53e11e735dce3526daca8824476f5c10128e686ce4 (1901 refs)

MFF so far (bigger mempool ZMQ dump)
Source ZMQ dumps w/o block hex (only block hash); bigger mempool setting (200k tx cap)

Period June 18 2018 ~ Nov 28 2018 (133 days, block #532421 ~ #551861, 19441 blocks)

Size on disk 6.0 GB (between 200-230 MB/cluster, avg 220 MB) ~> 15 MB/day

Entries 31758780 (31.8 million), with 55101 tx invalidations

Count dist tx in=99.23% (1.34% ref), tx out=0.36%, tx invdt=0.16%, block mined=0.06%

Byte dist tx in=94.49% (0.07% ref), tx out=0.03%, tx invdt=0.79%, block mined=3.78%

Top ref tx c529e5b79ec7216c97b03c71cd5d0c60c6e087a7b5d7a428167baa6d3b011f35 (1434 refs)

MFF so far (Bitcoin Core with MFF)
Source Bitcoin network via patched Bitcoin Core (default settings)

Period June 2 2019 ~ June 7 2019 (5 days, block #578885 ~ #579642, 758 blocks)

Size on disk 77 MB ~> 15 MB/day (~220 MB/cluster)

Entries 353487 (353k), with 1054 tx invalidations

Count dist tx in=99.49% (0% ref), tx out=0%, tx invdt=0.30%, block mined=0.21%

Byte dist tx in=40.43% (0% ref), tx out=0%, tx invdt=0.59%, block mined=58.98%

Top ref tx da8bbd861efb37ccbae748b9eba7081caf9aad920658f0c480fa2733e1a8db74 (353 refs)

MFF so far

MFF so far

MFF so far

MFF so far

How?

3 components, on top of each other:

Brief overview

Component Description

CQDB Seekable Sequential (C-kable Sequential) DB (lib & spec)

BCQ Bitcoin CQ (specialization of CQ for Bitcoin)

Implementations libbcq branch (Bitcoin Core), MFF toolset (mff-findtx, …), etc.

● Light-weight, space and memory efficient sequential database
● Data stored in independent clusters, each with a range of segments.
● Append-only. Chronological time restriction.
● Objects are stored on first reference, and referenced subsequently.

CQDB

CQDB
Clusters stored as blocks of header+data pairs. Because of append-only
nature, the header for the current cluster is actually stored as the header for
(cluster + 1).

H
ea

de
r

0

D
at

a
1

H
ea

de
r

1

D
at

a
2

H
ea

de
r

2

D
at

a
3

H
ea

de
r

3

CQDB
Append-only, chronological → write index and data simultaneously, once.

H
ea

de
r

0

D
at

a
1

H
ea

de
r

1

D
at

a
2

H
ea

de
r

2

D
at

a
3

H
ea

de
r

3

CQDB
Serialize objects once, then use references to point back at their byte position
2nd+ time. Reader chooses what to remember. Seek back and re-deserialize
on demand.

H
ea

de
r

0

D
at

a
1

H
ea

de
r

1

D
at

a
2

H
ea

de
r

2

D
at

a
3

H
ea

de
r

3

BCQ
BCQ is a CQDB where

● each segment corresponds to a block in the blockchain
● each cluster is 2016 blocks (i.e. one retargeting period)
● objects are transactions or references to such (e.g. outpoints)

Write txid 36e2f[...]384b into cluster 3, starting at byte position 10000.

BCQ

H
ea

de
r

2

H
ea

de
r

3

Write txid 36e2f[...]384b into cluster 3, starting at byte position 10000.
Reference txid 36e2f[...]384b for block #5 inclusion at byte position 30000.
Reference is written as 20000 as a varint (0x809b20), the offset.
Also writes segment 5
ref to end of header 3.

BCQ

H
ea

de
r

2

H
ea

de
r

3

10000 ⇄ obref(20000) segmentref(5, 30000)

When I read block #5, I get "this tx is at <block start>-20000". So tx 36e2f… is
aka "tx 10000". If I remember "tx at 10000", I am fine. If not, and I want/need
it, I can seek back and read it.

BCQ

H
ea

de
r

2

H
ea

de
r

3

segmentref(5, 30000)10000 ⇄ obref(20000)

BCQ available as a patch for Bitcoin Core at:

https://github.com/kallewoof/bitcoin/tree/libcq

CQDB (libcqdb) is at: https://github.com/kallewoof/cqdb

MFF (libbcq) is at: https://github.com/kallewoof/mff

BCQ

https://github.com/kallewoof/bitcoin/tree/libcq
https://github.com/kallewoof/cqdb
https://github.com/kallewoof/mff

So!

What's it good for?
● Educational for people learning how Bitcoin works (e.g. seeing the flow of

a transaction being RBF-bumped or double spent)
● Useful in general for scientific purposes, such as writing better algorithms

for fee rate estimation, or analyzing spam vs not spam.
● Improved transparency (we know more precisely what they know)

A "double spend" (not really)

Questions?

Github links etc:
CQDB: https://github.com/kallewoof/cqdb
BCQ/MFF: https://github.com/kallewoof/mff (with tools)
Patched Bitcoin Core:
https://github.com/kallewoof/bitcoin/tree/libcq
Mempool dumps available upon request.

Thank you for your
time Karl-Johan Alm

@kallewoof

C42A FF7C 61B3 E44A 1454 CD35 57AF 762D B335 3322

https://github.com/kallewoof/cqdb
https://github.com/kallewoof/mff
https://github.com/kallewoof/bitcoin/tree/libcq

